

NASEO-NARUC Grid-Interactive Efficient Buildings Working Group: Scaling Demand Flexibility with Software January 30, 2025, 3:00 pm ET

Welcome: Rodney Sobin (NASEO) and Jeff Loiter (NARUC)

Scaling Demand Flexibility with Software: Octopus Energy and Kraken Technologies

Rajiv Shah, Head of North American Policy and Markets, Octopus Energy Group

Q&A and discussion

Wrap-up

NASEO-NARUC Grid-Interactive Efficient Buildings Working Group: Scaling Demand Flexibility with Software January 30, 2025, 3:00 pm ET

Logistics:

Please mute when not speaking.

Please use Q&A box or chat to offer questions.

Slides and recording will be posted.

NASEO-NARUC Grid-Interactive Efficient Buildings (GEB) Working Group

https://naseo.org/issues/buildings/naseo-naruc-geb-working-group Inquiries: <u>GEB@naseo.org</u>

- GEB/demand flexibility/grid-edge management can:
 - Lower costs, enhance resilience, reduce emissions
 - Reduce peak loads, moderate ramp rates, provide grid services
 - Enhance energy efficiency, integrate distributed and renewable energy resources
- Questions:
 - How to optimize facility interactions with grid? How to coordinate DERs?
 - How can state policies, programs, regulations advance GEB/DF/DER benefits?
 - What are roles for states, facility owners and operators, utilities, tech and service providers, and others?
- Forums, state exchanges, national lab tech assistance, reports, resources...
- U.S. DOE, Building Technologies Office support

Grid-interactive Efficient Buildings: State Briefing Paper

NASEO-NARUC Grid-interactive Efficient Buildings Working Group

NASEO-NARUC Grid-Interactive Efficient Buildings Working Group

https://naseo.org/issues/buildings/naseo-naruc-geb-working-group

Working Group co-chairs:

- Liz Reichart, MA Dept. of Energy Resources
- Ashley Norman, Hawaii PUC staff

Working Group – 30 states and territories:

Arkansas I Arizona I California I Colorado I Connecticut I Florida I Georgia I Hawaii I Idaho I Illinois I

Inquiries: GEB@naseo.org

Maryland Massachusetts Michigan Minnesota Mississippi Nebraska New Jersey New York Pennsylvania District of Columbia Oregon South Carolina Tennessee Utah Vermont Virginia Washington Wisconsin Wyoming Virgin Islands

NASEO-NARUC Grid-Interactive Efficient **Buildings Working Group**

https://www.naseo.org/issues/buildings/naseo-geb-resources

New/recent items:

- DOE announced Connected Community 2.0 and Smart Charge Management Awards
- DOE, Pathways to Commercial Liftoff; Virtual Power Plants 2025 Update •
- DOE, Sourcing Distributed Energy Resources for Distributed Grid Services ٠
- LBNL VPP and Demand Flexibility Reports (December 2024 January 2025)
 - DER Integration Framework: Regulatory Innovation for DER Compensation and Cost Allocation
 - Distributed Energy, Utility Scale: 30 Proven Strategies to Increase VPP Enrollment
 - Virtual Power Plants: Insights, Profiles and Inventory
 - Moving Beyond Direct Load Control: A Maturity Model for Realizing the Promise of Demand Flexibility
 - State regulator opportunities to advance distributed energy resources aggregations in wholesale markets.
- Colorado Microgrid Roadmap -- NASEO-NARUC State Microgrid WG webinar March 21, 1-2pm ET ٠
- Maine Governor's Energy Office (GEO) Distribution System Operator (DSO) Feasibility Study •
- Ann Arbor's Sustainable Energy Utility (SEU): opt-in, supplemental, community-owned energy utility that will • 100% RE from local solar and battery storage systems installed at participating homes and businesses in the city.

Our previous Working Group Forum

NASEO-NARUC Grid-interactive Efficient Buildings (GEB) Working Groups Forum: RMI Virtual Power Plant (VPP) Flipbook - September 4, 2024

What's new?

VASEO GEB Resources

NASEO-NARUC Grid-Interactive Efficient Buildings Working Group

https://www.naseo.org/issues/buildings/naseo-geb-resources

Upcoming:

- In-person training open to NASEO, NARUC, NASUCA members:
 - <u>NASEO-NARUC Training for States on Integrated Distribution System Planning 2.0: Planning for</u> <u>Electrification and Distributed Energy Resources</u> March 11-12, 2025 - Detroit, MI
 - NASEO-NARUC Training for States on Integrated Distribution System Planning 2.0: Planning for Electrification and Distributed Energy Resources April 30-May 1, 2025 - Denver, CO

Seek suggestions for future forums and webinars. Possibilities:

- Sourcing DERs for Distributed Grid Services
- Connected Communities Update
- Smart Charge Management
- Upcoming LBL reports on
 - Coordinated Controls DERMS
 - Utility and Business Model Frameworks and Scaling

Presentation to the NASEO-NARUC GEB Working Group

January 30, 2025

Agenda

Intro to the Octopus Energy Group + Kraken (5 mins)

Problem Statement and Challenges (10 mins)

Scaling Demand Flex & VPP Solutions (15 mins)

- Customer-centric approach
- Interoperability
- Promoting market-based solutions to valuing DERs

Q&A/Discussion (30 mins)

Introduction to the Octopus Energy Group and Kraken

OEG | Working across 4 key areas for the energy transition

Quick Overview of the Kraken Platform

Kraken is the new end-to-end operating system for future-focused utilities

Customer Service & After Care

Flexibility Products

Residential

SmartFlex

- EV charging
- Heat pump optimization
- Solar PV control
- Home battery control
- Thermostat control

Commercial & Industrial / Front of meter

InfraFlex

- Large scale storage
- Utility scale solar PV
- On/offshore wind farms
- Demand side response

Tota 3

Co

.21 gw	42.35 gw		,	345,669	
mercial Domestic					
lsset breakdown			Asset breakdown		
gw			35.79 GW		
V Charge Point	108,512	33%	Onshore wind	16.25 aw	459
ectric Vehicle	107,561	32%	 Offshore wind 	7.96 gw	229
ome Mini	103,468	31%	 Solar 	7.45 gw	219
vermostat	7,700	2%	 Battery 	1.47 gw	49
attery	3,343	1%	 Gas generation 	658 мw	29
ther	1,630	0%	Other	2.01 aw	69

=

Most diverse portfolio of **DERs and** largest EV VPP

7014 tonnes CO, prevented

701366 trees of CO, captured

Based on a tree absorbing 10kg CO, per year

Background context:

Proliferation of DERs is changing power flows on the grid and increasing demand, shapes → leading to system balancing challenges & increasing costs

Problem statement:

To manage the challenges posed by DER proliferation, utilities are deploying various demand flexibility tools (e.g. DERMS, VPPs) → but results have largely been small and siloed

Challenge #1 Booming number and variety of energy assets

200 million new devices by 2030

Source: Kraken, Bloomberg New Energy Finance

200 million new devices by 2030

Devices

Countries

2023-30 growth

Challenge #2 Changing consumer demand profile

Energy Use

Energy Use

Energy Use

Challenge #3 Growth in demand and associated costs

Why are we here? We need 160 GW of flex

Source: 2025 DOE Virtual Power Plants 2025 Update

Where we are coming from

Over **50%** of eligible EVs enrolled in Octopus Energy's VPP Where we find ourselves

"Less than **20%** of eligible DER enrolled in VPPs"

> Wood Mackenzie

20% does not get us to 160 GW

KRAKEN

SmartFlex in Action - Intelligent Octopus

Intelligent Octopus **powered by SmartFlex**

Intelligent Octopus **powered by SmartFlex**

On the warmest Texas days, Octopus leverages Kraken to call thermostats to provide a 40% reduction in peak load when the grid is stressed

August 20th, 2024 Consumption vs. Price

Potential load reduction increases as peak load increases with progressively higher temperatures.

On the hottest days, we have observed a 2.5kW peak load reduction per customer on average for OEUS customers.

We can squeeze more demand flex value by utilizing customer data to experiment and innovate

Sevidence suggests that most OEUS customers can tolerate up to 60 minutes without increasing override rates substantially.

Cohorting customers enables us to maximize the duration and depth of events across the portfolio while maintaining ~10% override rate.

With most price events lasting 45 - 60 minutes this year, we have confidence that we can clip consumption for most or all of our portfolio for the entire event duration.

Scaling Demand Flexibility and VPPs

#1. Promoting solutions for valuing DERs

Overview of the value streams DERs can provide

Kraken in the UK - optimizing across different markets

- 🗹 Day ahead trading
- Real-time trading & Net Imbalance Volume (NIV) chasing
- 🗹 Capacity market
- 🗹 Balancing Mechanism
- 🗹 DNO contracts

Approaches to benefits valuation by utility "cohort"

2 - A			Cohort			
Value Category			Outside organized markets; utilities own generation assets (Turquoise cohort)	Within organized markets; utilities do not own generation assets (Jade cohort)	Within organized markets; utilities own generation assets (Coral cohort)	
Energy Benefits	Energy & Capacity Grid Services	Bulk Power	Based on avoided costs or least cost solution, including ADERs.	Based on market values.		
		Distribution	Based on avoided grid upgrade costs.			
		Grid Edge	Based on customer benefits from service, typically a reduction in bills.			
	Essential Reliability Services	Bulk Power	Based on avoided costs or least cost solution, including ADERs.	Based on market values where they exist. Otherwise based on avoided costs.		
		Distribution	Ancillary service and reliability values based on avoided grid upgrade costs. Resilience values based on value of lost load or reliability improvements.			
		Grid Edge	Based on customer benefits from service, typically through avoided outage costs for the customer.			
Non-Energy Benefits	Reduction in GHG Emissions and Pollutant Emissions, Social Equity		Modeled based on state-specific goals and societal impact assumptions or use values estimated by the EPA.			

Sample data needed to properly value flexibility as a grid service

Grid + System

- real-time grid status;
- peak demand & load variability;
- forecasting models for demand, generation, and grid constraints

DERs

- capabilities, performance metrics, and cost structures
- real-time telemetry monitoring

Markets

- price signals (LMP, TOU rates time-of-use rates, and other market-based pricing signals);
- ancillary service requirements; participation models

Locational

- substation and feederlevel data, including line capacities and losses;
- congestion data; hosting capacity

Behavioral + Temporal

 historical DER utilization patterns; user behavior; temporal dynamics

Valuation Metrics

- avoided costs (e.g.T&D deferrals, avoided generation costs);
- environmental benefits (e.g. carbon reductions);
- resilience and reliability contributions

Role of SEOs and PUCs to promote valuation of DERs through fair compensation mechanisms

Advocate for Policies and Market Designs that Allow DERs to maximize their Value

- Develop fair compensation mechanisms (e.g., California's DSGS, New York's VDER, Powering Up Colorado*)
- Align DER valuation with state energy goals (resilience, equity, decarbonization, energy cost mitigation)

Share and Facilitate Learnings from other Markets

- Support development of hosting capacity maps, locational value assessments, and DER registries
- Convene stakeholders (utilities, third-party aggregators, and communities) to share best practices
- Highlight successful initiatives
 like:
 - Hawaiian Electric: DERs for peak shaving and demand response.
 - Green Mountain Power: Residential battery aggregation for grid services

Promote Solutions

 Encourage non-market solutions like microgrids and community solar for underserved areas

Scaling Demand Flexibility and VPPs

#2. Seamless Control, Maximum Impact: Why DERs should be interoperable and intro to Project Mercury

Growing variety of asset types, brands, models & technical capabilities...

How do we manage this complexity with scalable solutions...?

Managing the Proliferation of DERs: Interoperability is Critical

A surge in DER adoption is providing new grid resources at scale (from a variety of OEMs) with an opportunity to:

- Mitigate grid disruptions
- Tap into existing resources for market and grid operations
- Be proactive in incorporating DERs into Integrated Resource Planning

Seize the opportunity with integration

- To standardize signals/communications across all DERs for utilities, aggregators and ISOs/RTOs, require interoperability for DERs to receive SEO or ratepayer \$\$
- DERs are customer-owned resources- develop rules that allow the maximum flexibility to monetize their investments

Illustrative Scenario - customer w/multiple DERs from different OEMs

Consider a customer who owns the following devices from different OEMs:

mercury

Mercury is a collaborative, non-profit initiative, led by EPRI, bringing together manufacturers, utilities, regulators, associations, and tech providers With a mission to develop and promote guidelines for consumer devices to integrate into energy systems to participate in demand-response programs and markets

Mercury will:

Develop a certification

Establish technical guidelines for functionality to support grid services

Foster collaboration

Promote consumer participation in demand flexibility

Mercury will not:

Founding Members

Utilities

Tech Providers

Research Organizations

Manufacturers

Scaling Demand Flexibility and VPPs

#3. Develop a customer-centric approach

Customer

Control Room

There are various well-documented lessons from VPP providers regarding customer engagement...

30 STRATEGIES OF LARGE VPP PROGRAMS

30 Strategies: Categories, relative feasibility, and impact

Marketing

- Concisely message program benefits
- Mention multiple motivators for participation
- Deploy top-of-funnel marketing
- Host in-person promotional events

Enrollment Process

- Create a seamless enrollment process
- Pre-enroll devices sold on utility marketplaces
- Offer point-of-sale enrollment at retailers
- Offer easy enrollment in multiple programs
- Integrate value-add services into programs
- Provide referral incentives

Ecosystem Partner

- Harmonize messaging from utilities and OEMs
- Engage customers through trusted entity
- Partner with local installers
- Exchange learnings with other utilities

Incentive Design

- Maximize the financial incentive
- Ensure customer pays a portion of device cost
- Offer ongoing participation payments
- Bundle device financing options with programs Align price signals
 - Offer active and passive control models

Engagement and Retention

- Improve program design over time
- Regularly remind customers of their rewards
- Compensate through channels customer will notice
- Communicate societal impact of participation
- Call regular testing events
- Offer easy unenrollment
- Offer flexibility to opt out of events
- Limit event notifications in automated programs
- Allow customers to set control range
- Offer technology choice where available

30 Strategies: Impact and Ease of Implementation Based on perspectives of VPP solutions providers

Note: The feasibility and impact scores for Strategy 18 reflect the views of the authors because it was not included in the survey.

Spotlight on incentive design: things to consider

- Start simple, grow the customer base, and evolve the product over time
- At the outset, incentives might be different for different customer segments or assets
- Consider incentives for customers with and w/o smart meter
- Evolve from off-bill incentives/simple credits to dynamic retail pricing that is DER-agnostic
- There are always PROs and CONs...!

The offering should be:

- Competitive
- 2. Attractive & Beneficial for the customer
- 3. Beneficial to the utility (eventually)
- 4. Incentivize the right customer behavior

Low complexity Compensation models for load flexibility

Туре	Example	
device-specific enrollment-based off-bill payment	\$20 gift card for enrolling your thermostat, mailed once per year	
device-specific enrollment-based bill credit	\$20 credit applied annually on Oct bill for customers with enrolled thermostats	
device-specific performance-based bill credit	\$10/kW-yr for thermostat-based load reduction, applied on Oct bill	
device-specific retail rate with time-varying component	TOU rate for EVs	
device-agnostic retail rate with time-varying component	whole-home TOU rate	
device-agnostic retail rate with time- AND location - varying components	whole-home TOU rate with locational pricing overlay	

High complexity

Incentivization | Examples & case studies

Client #1 - credit \$30/month for every 5 smart charges **5**

Pros Low effort Great for Alpha/Beta testing **Cons** Less scalable Less of a driver for behavioural change

Client #2 - \$30 discount applied via electricity statement each month (EV) ऄ

Client #3 - credit \$10 each month for being on the tariff

Pros Low effort Great for Alpha/Beta testing **Cons** Less scalable Less of a driver for behavioural change **Client #4** - dynamic time of use (7.5¢/kWh 12am - 5am, and all smart charging)

Pros Offers low rates Drives changes to behaviour **Cons** Technically complex Hard to explain to customers

Utility Participation Model – dictates who owns the customer relationship for flex services

Example VPP Utility Participation Models'

*The models and roles shown are representative and not exhaustive. Individual VPP features add more details to the structure and operations for each VPP. In addition to the models described above, some third parties have VPP programs that participate directly in wholesale markets. In this model, a utility may not hold any of the above roles, but may require visibility for management of distribution system impacts. This model, a statist of the DE Pathware to VPP commencial Until Report.

VPS VPPs and Their Benefits

Thank you

<u>rajiv.shah@kraken.tech</u> <u>emma.rodvien@kraken.tech</u>

